
INTRODUCTION

As the use of n-tier computing architect-
ures become ubiquitous, the availability
and performance of software applications
is ever more dependent upon complex
network interactions between hardware,
network, and software components and
thus more difficult to measure, monitor,
and manage. At the same time, the
importance of monitoring applications
successfully and cost effectively becomes
greater and greater especially for
e-commerce and IT Service Management.

In the first part of this paper, a set of
practical techniques for application
monitoring are identified and described.
In the second part, a method for value
engineering the overall design for
application monitoring is presented.

ALTERNATIVE METHODS OF
APPLICATION MONITORING

The list below describes some of the
basic methods that are commonly used to
monitor the performance and availability
of applications.

■	 Application monitoring plug-ins
■	 Multi-measure containers
■	 Application admin console “scraping”
■	 Web services based application

monitors
■	 Synthetic transaction monitors
■	 Web services subscription
■	 Port based “gets”

These methods differ substantially from
each other in effectiveness, initial cost,
and operating cost. The most mission
critical applications are often monitored
with more than one technique. These
techniques can be categorized into either
white box or black box monitoring as
described in the following paragraphs.
The use of network sniffers for application
monitoring are not described below,
however, the design methods described in
the second part of the paper apply equally
to all application monitoring techniques.

WHITE BOX TESTING

In white box testing, measurements are
made of the availability and sometimes
the performance of the internal software
components of the application. The
individual measures can then be
combined and correlated to make
inferences concerning the application’s
overall availability and performance.

Application monitoring plug-ins
Most of the monitoring platforms (HP
OpenView, CA Unicenter, IBM Tivoli, BMC
Patrol, etc.) have libraries of application
monitoring agents that can be deployed
on all of the servers on which the
software of a particular application
has been installed. The plug-in for a
particular application communicates
with a console-like application on
the monitoring server. The plug-in
correlates the information collected
from the agents and then presents the
overall availability of the application
through a central console. Performance
information can be extracted from
these consoles provided that the owner/
installer is willing and able to construct
a complex dependency network
which models the performance of the
application based on its constituent
parts.

Since this technique requires expensive
monitoring software and also the creation
and maintenance of complex architecture-
specific correlation models, it is very
expensive and thus commonly used only
by the largest and most sophisticated
organizations and even then only for their
most important applications. Further,
the technique is sufficiently technical and
complicated that it lacks credibility for
use in Service Level Management.

Optimizing Application Monitoring

WHITE PAPER

Multi-measure containers
Many monitoring tools allow the assembly
of an arbitrary collection of different
monitors into a “container” or virtual
host that is then assigned the name
of the application. The container is
then associated with the availability of
the particular application that is to be
monitored. Some of the measures that
may go into a typical container are the
following:

■	 SNMP providing Windows services
availability and application procs

■	 Perfmon providing Windows services
availability and application procs

■	 SNMP for an application specific MIB
■	 Script-based monitors executing Unix

shell commands for application procs
status information

■	 Port based scans for process availability
■	 Log file parsing

Most monitoring tools can be set to use
this technique. The idea is that if all of
the monitors in the container are not in
alarm, the application is considered to
be available. It isn’t practical to create
performance measures from multi-
measure containers.

Application admin console scraping
Many of the enterprise class applications
in use today are equipped with their
own process monitoring consoles,
often accessible as either web sites or
secure web sites. The admin subsystems
contain whatever set of white box
internal monitoring checks that the
application developer has provided for this
purpose and clearly there are significant
differences in the effectiveness between
products. Indeed, not all applications
are supplied with monitoring consoles.
These consoles are often capable of
providing extensive availability and crude
performance monitoring capabilities.

It is quite feasible to use the system
admin console function for application
monitoring, and then import the
information it develops into the
centralized monitoring function. This
is done by connecting to the admin
console with http or http(s), and then
parsing the html of the web pages to
detect the presence of error conditions.
When detected, a generic error message
can be sent to responder personnel.
The responder personnel then use the
monitoring system console to gain secure
access to the application admin console
where the details of the incident are
available for review and corrective action.

Generally this technique is useful to
rapidly identify a subset of the problems
causing a lack of system availability. Its
limitation is that it does not consider or
directly measure the interaction between
application and network components.

Web services monitoring
Application Monitoring using web services
is an exciting and rapidly evolving area
for the application of industry standards.
In short, the technique consists of
using the “software bus” to subscribe
to web services provided by enterprise
applications. These applications publish
relevant monitoring information in the
format of xml documents using the SOA
protocol. The technique may have some
of the limitations of all white box testing,
however, it promises to be much easier
to install and maintain than many current
generation white box techniques.

OPTIMIZING APPLICATION MONITORING

2

BLACK BOX TESTING

In black box testing, the entire application
is tested from an outside probe,
simulating the actions of an end user or
interfacing application.

Synthetic transaction monitors
Synthetic transactions are created using
a macro recorder to generate scripts that
emulate the actions of a real human being
using the application at characteristic
speeds. The alarm is based upon the
time that it takes to complete the
simulated transaction. Since the synthetic
transaction is processed at the same time
as any other real transaction that is in
process, the response time is influenced
by demand vs. capacity at the time the
synthetic transaction is performed.

Therefore, the measurement gives a
realistic picture of not only application
availability, but also of system response
performance. Behavioral studies
have shown that slow performance is
comparable to no performance to a
user, regardless of whether the software
processing the transaction is actually
up or down. Performance of n-tier
transactions is often path dependent and
therefore multiple points of origination
may be needed to completely measure the
applications performance for all users.

There are two types of synthetic
transaction macro-recorders; one is
for thick windows clients and the other
for browser based thin clients. These
functions are available on a many
standard monitoring tools but, more
generally, are available from the software
testing marketplace whose leaders are
Mercury Interactive, Software Research,
Rational, Quest, Compuware, and others.

Port Based Scans
These are the most simple and direct
methods of testing the availability of a
server. Virtually all monitoring systems
can easily be configured to perform a get
command, using one of the characteristic
ports used to access an application. For
example a “URL get with string match”
monitor, will exercise DNS and the
other network utility servers, the NIC
card of the server, the port daemon of
the characteristic port(s), the OS, and
the application being tested in a single
monitor. This format of application
monitor is often suitable for lower
impact applications, or as a temporary
placeholder for more comprehensive
monitors that may be added in
subsequent phases of multi-phase
deployments.

WHITE BOX VS. BLACK BOX TESTING

The n-tier software architectures for
today’s enterprise applications qualify
as complex systems. Not only are there
interactions between components of the
same systems, but interactions also occur
with virtually all other systems, due to
the shared system resource represented
by the network, and common storage
systems that are not under the control
of a particular application. In complex
systems, the subtle interactions between
system elements and shared resources
often dominate the target system
performance. This reality establishes
an upper limit to the effectiveness
of white box testing for service level
measurement. In more practical terms,
IT customers seem prepared to accept
direct simulations of user experience for
measurement of delivered service level.

On the other hand, white box monitoring
provides very valuable information
for rapidly diagnosing, isolating, and
resolving system failures and for doing
performance tuning. For many mission
critical applications, it may be worthwhile
to employ both white box and black box
testing techniques.

OPTIMIZING APPLICATION MONITORING

3

DESIGN PROCEDURES

The actual procedure for value
engineering the application monitoring
design is complicated and approached
with step-wise iteration. The approach
uses the concept of marginal analysis and
expressly includes the life cycle costs of
maintaining the monitoring application as
well as initial deployment costs.

The first step of the application design
procedure is to identify all of the
important applications that justify being
monitored. Then the applications are
placed in rank order depending upon the
business impact of outages. The diagram
given below illustrates this:

The next step in the process is to
select the set of techniques that can
be considered for monitoring tools that
are already deployed, or are likely to
be purchased as a result of the design
process. As part of this process, estimates
are made of the performance, and cost
of acquiring, any new tools needed to
supply the various application monitoring
methods. Conceptually, the result is a
horizontal stack ranking of application
monitoring tools based upon their relative
cost as shown in the following figure:

OPTIMIZING APPLICATION MONITORING

Figure 1. Business Impact of Application Outages Figure 2. Application Monitoring Tools TCO

�����

��������������������

�����������������

������������

���������������

����
�����

����������������

���

�������������������������

������

��������
���������� �

�
�
�
��
�
�
��
�
��
�
�
��
�
�
��
�
�
�
��
�
�

�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
��
�
�

�
�
��
��
�
�
�
�
�
�
�
�

�
�
�
��
��
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�
��
�

�
�
�
�
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�
�

�
�
�
��
�
�
�

�
�
�
�
�
�
�
�

�
�
�
��
�
�
�

�
�
��

�
�
�
�
�

�����

��������������������

�����������������

������������

���������������

����
�����

����������������

���

�������������������������

������

��������
���������� �

�
�
�
��
�
�
��
�
��
�
�
��
�
�
��
�
�
�
��
�
�

�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
��
�
�

�
�
��
��
�
�
�
�
�
�
�
�

�
�
�
��
��
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�
��
�

�
�
�
�
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�
�

�
�
�
��
�
�
�

�
�
�
�
�
�
�
�

�
�
�
��
�
�
�

�
�
��

�
�
�
�
�

4

Experience shows that the optimal
solution for synthetic transaction
monitoring is to use free standing macro
recorders operating under the control
of a central monitoring system, rather
than “built in” macro recorders from
commercial monitoring tools. Accordingly,
at GroundWork we estimate the cost of
this approach, rather than to estimate
the costs of using the macro recorders
that are included with some monitoring
systems. We then re-visit this design
choice if the installed tools have the
required capability.

The effectiveness of synthetic transaction
monitors is substantially leveraged
when the same testing environment is
available for use in production monitoring,
pre-release testing, and load testing. In
addition to conserving license fees, the
diagnostic information reported from
production monitoring is familiar to both
QA and development personnel.

It is far more likely to select a white-
box monitoring tool where the platform
products in which they are embedded are
already installed and when the number of
“tiers” in the application implementation
are relatively few. This simplifies
the installation and maintenance of
the correlation network required for
application monitoring. Multi-measure
containers are more likely to be used
where the application is contained
within a single hardware server. For
example, Microsoft’s recommendations
for Exchange monitoring are easily
implemented with this approach, but only
the fearless would attempt it for the SAP
infrastructure.

The final design of the monitoring
system is based upon assigning
multiple monitoring techniques of
variable monitoring intensity. In the final
design, the highest impact applications
might use white box plug-ins from a
monitoring system like HP Open View
or CA Unicenter (if already licensed)
and synthetic transactions with multiple
test transactions and port based scans
of characteristic ports. In contrast, a
medium impact application might use
multi-measure containers with a single
synthetic transaction and port based
scans.

Finally, a still lower impact application
might only be monitored with a port-
based scan with string match of the
returned field. For those applications
offering an admin console, scraping the
console for error messages is usually
recommended. The resulting assignment
of monitoring techniques to applications
can be shown to provide the optimal
relationship of cost to utility.

OPTIMIZING APPLICATION MONITORING

5

CONCLUSION

After studying dozens of designs for
application monitoring, we have found
that the optimal solution is often achieved
through simple synthetic transaction
monitors, combined with multi-measure
containers for simple and less critical
applications. The cost effectiveness of this
solution is leveraged substantially when
the same tools are used for monitoring
release testing, and load testing of n-
tier applications. We find that complex
white box testing techniques are of useful
primarily for diagnostics.

Applying these principles to application
monitoring, coupled with a well-managed
project, can achieve significant business
benefits. These include higher application
availability and employee productivity,
and lower capital and operating costs.
Whether using expensive monitoring
software or open source tools, the
value of the monitoring system derives
from the effectiveness of its design and
implementation plan, and the business
processes that use its output – not
the features of the software. For many
organizations, this is good news.

ABOUT GROUNDWORK

GroundWork Open Source Solutions, Inc.
provides open source-based IT infra-
structure management solutions such as
network and systems monitoring, service
desk management and IT dashboards.
GroundWork’s solutions enable IT
management to leverage the flexibility
and low cost of open source tools to
achieve enterprise-level availability,
performance and operational efficiency
for a fraction of the cost of commercial
software.

Contact us
510.899.7700
www.itgroundwork.com
info@itgroundwork.com

GroundWork
Open Source Solutions, Inc.
2200 Powell Street, Suite 350
Emeryville, CA 94608

©2004 GroundWork Open Source Solutions, Inc. All rights reserved.

OPTIMIZING APPLICATION MONITORING

6

